Engineered Biopolymeric Scaffolds for Chronic Wound Healing
نویسندگان
چکیده
Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.
منابع مشابه
Preparation of tissue-engineered wound dressing consisting of chitosan fibers containing silver ion-doped bioactive nanoparticles for wound healing
Background: Wound healing is a complicated process involving the proliferation of the epithelial cells, deposition of granulation tissue as well as recruitment of inflammatory cells. It also is a hot topic of research for trauma, orthopedics and general surgery studies. There are many forms of cells involved in this process. This study aimed to design a tissue-engineered wound dressing consisti...
متن کاملMulti-function Based Modeling of 3D Heterogeneous Wound Scaffolds for Improved Wound Healing
This paper presents a new multi-function based modeling of 3D heterogeneous porous wound scaffolds to improve wound healing process for complex deep acute or chronic wounds. An imaging-based approach is developed to extract 3D wound geometry and recognize wound features. Linear healing fashion of the wound margin towards the wound center is mimicked. Blending process is thus applied to the extr...
متن کاملStem Cells and Engineered Scaffolds for Regenerative Wound Healing
The normal wound healing process involves a well-organized cascade of biological pathways and any failure in this process leads to wounds becoming chronic. Non-healing wounds are a burden on healthcare systems and set to increase with aging population and growing incidences of obesity and diabetes. Stem cell-based therapies have the potential to heal chronic wounds but have so far seen little s...
متن کاملBiomaterials for Promoting Wound Healing in Diabetes
Impaired wound healing is the leading cause of non-traumatic lower limb amputation in people with diabetes mellitus. Skin substitutes engineered from biomaterials currently play an important role in the healing process of diabetic wounds, especially those wounds that fail to show progress after standard wound care. This article summarizes current developments of biomaterials used for promoting ...
متن کاملElectrospun 3D Fibrous Scaffolds for Chronic Wound Repair
Chronic wounds are difficult to heal spontaneously largely due to the corrupted extracellular matrix (ECM) where cell ingrowth is obstructed. Thus, the objective of this study was to develop a three-dimensional (3D) biodegradable scaffold mimicking native ECM to replace the missing or dysfunctional ECM, which may be an essential strategy for wound healing. The 3D fibrous scaffolds of poly(lacti...
متن کامل